Sponsor   

Medical Terminology Daily (MTD) is a blog sponsored by Clinical Anatomy Associates, Inc. as a service to the medical community, medical students, and the medical industry. We will post a workweek daily medical or surgical term, its meaning and usage, as well as biographical notes on anatomists, surgeons, and researchers through the ages. Be warned that some of the images used depict human anatomical specimens.

Click on the link below to subscribe to the MTD newsletter. If you think an article could be interesting to somebody else, click on the mail link at the top of each article to forward it. 

You are welcome to submit questions and suggestions using our "Contact Us" form. The information on this blog follows the terms on our "Privacy and Security Statement"  and cannot be construed as medical guidance or instructions for treatment. 


Click here to subscribe to the Medical Terminology Daily Newsletter

fbbuttons sm

We have 224 guests and no members online


A Moment in History 

Title page of Anathomia Corporis Humanis by Mondino de Luzzi. Image courtesy of the National Library of Medicine
Title page of "Anathomia Corporis Humanis" by Mondino de Luzzi

Alessandra Giliani

 
(1307 – 1326

Italian prosector and anatomist. Alessandra Giliani is the first woman to be on record as being an anatomist and prossector. She was born on 1307 in the town of Persiceto in northern Italy.

She was admitted to the University of Bologna circa 1323. Most probably she studied philosophy and the foundations of anatomy and medicine. She studied under Mondino de Luzzi (c.1270 – 1326), one of the most famous teachers at Bologna.

Giliani was the prosector for the dissections performed at the Bolognese “studium” in the Bologna School of Anatomy. She developed a technique (now lost to history) to highlight the vascular tree in a cadaver using fluid dyes which would harden without destroying them. Giliani would later paint these structures using a small brush. This technique allowed the students to see even small veins.

Giliani died at the age of 19 on March 26, 1326, the same year that her teacher Mondino de Luzzi died.  It is said that she was buried in front of the Madonna delle Lettere in the church of San Pietro e Marcellino at the Hospital of Santa Maria del Mareto in Florence by Otto Agenius Lustrulanus, another assistant to Modino de Luzzi.

Some ascribe to Agenius a love interest in Giliani because of the wording of the plaque that is translated as follows:

"In this urn enclosed are the ashes of the body of 
Alessandra Giliani, a maiden of Persiceto. 
Skillful with her brush in anatomical demonstrations 
And a disciple equaled by few, 
Of the most noted physician, Mondino de Luzzi, 
She awaits the resurrection. 
She lived 19 years: She died consumed by her labors 
March 26, in the year of grace 1326. 
Otto Agenius Lustrulanus, by her taking away 
Deprived of his better part, inconsolable for his companion, 
Choice and deservinging of the best from himself, 
Has erected this plaque"

Sir William Osler says of Alessandra Giliani “She died, consumed by her labors, at the early age of nineteen, and her monument is still to be seen”

The teaching of anatomy in the times of Mondino de Luzzi and Alessandra Giliani required the professor to be seated on a high chair or “cathedra” from whence he would read an anatomy book by Galen or another respected author while a prosector or “ostensor” would demonstrate the structures to the student. The professor would not consider coming down from the cathedra to discuss the anatomy shown. This was changed by Andreas Vesalius.

The image in this article is a close up of the title page of Mondino’s “Anothomia Corporis Humani” written in 1316, but published in 1478. Click on the image for a complete depiction of this title page. I would like to think that the individual doing the dissection looking up to the cathedra and Mondino de Luzzi is Alessandra Giliani… we will never know.

The life and death of Alessandra Giliani has been novelized in the fiction book “A Golden Web” by Barbara Quick.

Sources 
1. “Books of the Body: Anatomical Ritual and Renaissance Learning” Carlino, A. U Chicago Press, 1999 
2. “Encyclopedia of World Scientists” Oakes, EH. Infobase Publishing, 2002 
3. “The Biographical Dictionary of Women in Science”Harvey, J; Ogilvie, M. Vol1. Routledge 2000 
4. “The Evolution of Modern Medicine” Osler, W. Yale U Press 1921 
5. “The Mondino Myth” Pilcher, LS. 1906 
Original image courtesy of NLM
 


 "Clinical Anatomy Associates, Inc., and the contributors of "Medical Terminology Daily" wish to thank all individuals who donate their bodies and tissues for the advancement of education and research”.

Click here for more information


Rare & Collectible Books at AbeBooks.com


 

The aortic root and the aortic valve (1)

The term “aortic valve” refers to the three leaflets (or cusps) components that allow passage of blood from the left ventricle to the ascending aorta during ventricular systole, while at the same time preventing regurgitation or reflux of blood back into the ventricle during ventricular diastole. In reality, the “valve” is only a component of a larger structure called the “aortic root”. This article will describe the components of the aortic root and the aortic valve.

The ascending aorta presents with two distinct segments. The proximal segment is a dilated portion called the aortic root. The distal portion is known as the tubular portion of the ascending aorta. The boundary between these two portions is the [sinotubular junction (STJ). Some authors will recognize as the ascending aorta only the tubular portion.

The aortic root is that portion of the ventricular outflow tract and proximal aorta that supports the leaflets of the aortic valve. It is a functioning unit with relations both to the to the aorta and to the left ventricle, and it is here where in most cases we find the ostia of the right and left coronary arteries.

Aortic root and aortic valve
Aortic root and aortic valve.
Click on the image for a larger version.
 
The aortic root is composed of the three dilated sinuses of Valsalva, two of which give origin to the coronary arteries (right and left), three leaflets (or cusps), and the interleaflet triangles. While the distal boundary of the aortic root is clearly defined (the STJ), the proximal boundary is not as clear and is difficult to define. The STJ is defined by the apices of the three aortic leaflets as well as a clear line that appears as the aorta passes from the dilations of the sinuses of Valsalva to the well-defined tubular portion of the ascending aorta.

This proximal boundary is defined clinically by two circular regions: the ventriculoaortic ring distally and the virtual basal ring proximally.

The ventriculoaortic ring is a circular region formed by the left ventriculoaortic junction (the point where the aorta anchors on the left ventricle), and fibrous tissue of both the “cardiac skeleton” and the membranous interventricular septum. It is also called the “surgical anulus”. This is the area where a surgeon will anchor an aortic replacement valve.

Continued here: The Aortic Root and the Aortic Valve (2)

Note: The image depicts only one complete aortic leaflet. The other one has been transected to show the sinus of Valsalva and the third has been removed to show the attachment or "hinge" of the leaflet. For an anatomical image of the aortic valve click here.

Sources:
1. The Anatomy of the Aortic Root: Loukas, M et al. Clinical Anatomy 27:748–756 (2014)
2. “Extracardiac aneurysm of the interleaflet triangle above the aortic-mitral curtain due to infective endocarditis of the bicuspid aortic valve.” Hori D, et al. Gen Thorac Cardiovasc Surg. 2008 Aug;56(8):424-6
3. “Anatomy of the aortic root: implications for valve-sparing surgery” Efstratios I. Charitos, HS. Ann Cardiothorac Surg 2013;2(1):53-56
4. “The Forgotten Interleaflet Triangles: A Review of the Surgical Anatomy of the Aortic Valve” Sutton JP, et al Ann Thorac Surg 1995;59:419-27


The lost influence of Andreas Vesalius on eponymic anatomy

Andreas Vesalius Bruxellensis (1515-1564) is considered to be the father of modern anatomy, remembered because an illustrious life and by his book “De Humani Corporis Fabrica, Libri Septem” published first in 1543. Scores of books, translations, articles, and analyzes of his work have been published in the over 500 years since his birth.

With such an incredible pedigree we would expect his name to be attached to more than a few anatomical structures, many of which were first described in his opus magnus, the “Fabrica”, I wonder why this is not so. It is true that modern anatomy is trying to move from eponyms to more descriptive anatomical terms. Still, there are many that will not go away, as is the famous ligament of Treitz, or the sphincter or Oddi.

Today there is only one recorded eponym for Andreas Vesalius, the os vesalianum, a rare accessory bone in the foot located proximally to the base of the fifth metatarsal. It is usually asymptomatic, but in rare cases it can cause pain. It is formed by the failed fusion of the secondary ossification center of the fifth metatarsal.

Reviewing history, I was able to find other references to Andreas Vesalius eponyms or potential eponyms, now in disuse or misnamed:

Andreas Vesalius Bruxellensis
Suspensory ligaments of the mammary gland. Although first described by Vesalius in the Fabrica, these structures are named after Sir Astley Paston Cooper (1768 -1841), almost 300 years after being described by the great anatomist, who called them a “fleshy membrane” that stretched between the pectoral fascia and the skin.

- The vermiform appendix. Although called by many just “the appendix”, this structure is mentioned, but not named, by Jacobo Berengario da Carpi in 1524. It was Andreas Vesalius who first described it as an appendix, suggested it looked like a worm (Lat: vermis) calling it the “vermiform appendix”.

- The ligamentum suspensorium Vesalii or crural arch. First described by Giovanni Baptista Morgagni (1682-1771), it was named in honor of Vesalius by Dr. Laurentii (Lorenz) Heisters in his “Compendium Anatomicum” published in 1756. Other authors point to Gabrielle Fallopius as the first to describe this structure in 1561, although he did publish later than Vesalius (1543). Although named after Vesalius, it was later named after Francois Poupart who described it in 1695. You probably know this structure as the inguinal ligament.

-The ligamentum teres femoris. The round ligament of the femur was also first described by Vesalius in 1543.

NOTE: If you have other structures that have been named after Vesalius, please let me know by clicking here.

Sources:
1. “A Rare Cause of Foot Pain with Golf Swing. Symptomatic Os Vesalianum Pedis—A Case Report” Petrera, M et al. Sports Health. 2013 Jul; 5(4): 357–359.
2. “Andreas Vesalius’ 500th Anniversary: First Description of the Mammary Suspensory Ligaments” Brinkman RJ, Hage, JJ. World J Surg (2016) 40:2144–2148
3. “Compendium Anatomicum” Heisters, L. 1756 (German)
4. “Anatomy: An Encyclopedic Reference to the Language of Anatomy and Neuroanatomy. It Provides the Fascinating Origin of Terms and Biographies of Anatomists/Physicians Who Originated Them” Bergman, RA, Afifi, AK 2016


Eponym

UPDATED: From the Greek [ep(i)] meaning "outer, above, or upon", and the Greek suffix [o-nym] meaning "name". The word [eponym] refers to a person's name becoming attached to an anatomical location or surgical procedure. For centuries it has been the custom to honor or remember someone by attaching their name to a structure, location, procedure, or maneuver.

This has changed as anatomists tend now to give locations and structures descriptive terms. An example of this would be the "Ampulla of Vater" named after the German anatomist Abraham Vater (1684-1751) described today in anatomical texts as the "hepatopancreatic ampulla". The controversy on using eponyms or not goes on...

There are many eponymical terms in the medical arena; following are some of them, click on the links for additional information:

Hesselbach’s triangle: Named after Franz Kaspar Hesselbach (1759-1816) (see yellow insert in superior image)
Spigelian line (linea semilunaris): Site for an Spigelian hernia, named after Adrian Van Der Spigelius (1578-1625) (see blue arrow in inferior image)
Fallopian tube: Named after Gabrielle Fallopius (1523-1563)
Cooper's pectineal ligament. Named after Sir Astley Paston Cooper (1768-1841)
Hartmann's procedure: A two-stage colon resection and anastomosis. Named after Prof. Henri Hartmann (1860-1952), a French surgeon.
Heimlich's maneuver:  Named after Dr. Henry J. Heimlich (1920 - )
Ligament of Treitz: Named after Václav Treitz (1819 - 1872), a Czech pathologist.

If you want to see a listing of the eponyms in this website, click here.

Here is an article on "The lost influence of Andreas Vesalius on eponymic anatomy".

Here is an interesting article on eponyms by Ilana Yurkiewicz published on 11/15/2012 in Scientific American: "Modern medical terms are still named after Nazi doctors. Can we change it?". It is interesting and thougthful reading.

PERSONAL NOTE: Many anatomists today are actively trying to eliminate eponyms from anatomical, medical, and surgical books. For me, this eliminates the interest of learning about the people who either first described these structures or procedures, which is one of the objectives of this website. I wonder (and this is a tongue-in-cheek comment) if the reason for this desire to eliminate eponyms is because there are so many attached to anatomical structures that there is no place for their own names! When history has forgotten about the original eponyms maybe we will see new ones with the names of modern anatomists! I do not worry, my name is attached to the "Ligaments of Miranda". Dr. Miranda

Superior image property of: CAA.Inc.. Artist: M. Zuptich.
Inferior image property of:CAA.Inc.. Artist:D.M. Klein


Ascending aorta

UPDATED: The ascending aorta is the first and most proximal portion of the aorta. About 5 cm. in length and 3 cm. in diameter at its origin, its proximal end begins at the superior aspect of the outflow tract of of the left ventricle, at the ventriculoaortic junction. 

The ascending aorta ends superiorly at an imaginary horizontal plane (blue dotted line) that passes through the sternal angle (of Louis), continuing distally with the aortic arch. This is an important anatomical landmark, as many surgeons use as the superior border of the ascending aorta an oblique plane that passes proximal to the brachiocephalic trunk (yellow dotted line). Although this landmark could be useful in surgery, it is not anatomically correct.

Since the sternal angle (of Louis) also indicates the superior border of the pericardial sac, it can be said that the ascending aorta is completely intrapericardial, and in surgery the pericardial sac should be the anatomical landmark used to separate the ascending aorta from the aortic arch.

From its point of origin at the ventriculoaortic junction, the aorta presents with a dilated region where the aortic valve is located. The aortic valve is one of the two  semilunar valves of the heart, and the dilation of this region is caused by the presence of the sinuses of Valsalva. This dilated bulbous segment is known as the aortic root.

Ascending aorta, anterior view
Ascending aorta. Click on the image for a larger version.
The dilated, sinus portion, or aortic root segment of the ascending aorta continues superiorly with the tubular portion of the ascending aorta. The area of transition between these two components is marked by a sharp crease known as the sinotubular junction (STJ). The dilation of the aortic root is caused by the presence of the sinuses of Valsalva, named after Antonio Maria Valsalva (1666 - 1723).

The tubular portion of the ascending aorta ascends with an inclination anteriorly and to the right. The ascending aorta presents with a slight anterior bulge causing the transverse section of this aortic segment to be slightly oval.

Only two arteries arise from the ascending aorta, both usually at the aortic root segment, just inferior to the STJ. These are the right coronary artery and the left coronary artery. There are anatomical variations where only one, or up to five different coronary arteries have been described.

Image property of:CAA.Inc.Artist:Dr. E. Miranda


Kernicterus

Kernicterus is a disorder where excess bilirubin accumulates in the deep neural tissues of the brain and can cause brain damage in the newborn.

It is characterized by jaundice and a limpness of the newborn, devoid of energy. Can present with seizures, convulsions, and muscle spasms.

This condition is treatable and requires awareness from the parents if yellowness of the skin (jaundice) is detected along with the above-mentioned signs in the early days post-partum. There are other signs not mentioned in this article

The word [kernicterus] comes from the German word [kern], meaning “nucleus” or “core”. In this particular word the term kern refers to the fact that one of the most importantly affected brain structures in kernicterus are the basal ganglia of the brain (also known as the "central nuclei", found at the "core" of the brain. It also includes the word [icterus] from the Greek word [ικτερός] pronounced (ikterós). The word [icterus] in Greek was originally used to denote a yellow bird, and is now used to denote the yellow color of jaundice.

 Newborn with kernicterus jaundice
Click on the image for a larger version. 

We would like to thank diseasepictures.com for the image in this article. For additional information on neonatal jaundice, click here.

Sources:
1. Clayman, L. "The AMA Encyclopedia of Medicine" 1989. Random House, NY
2. “The Origin of Medical Terms” Skinner HA 1970 Hafner Publishing Co.

Thanks to Jackie Miranda-Klein for her contribution suggesting this word. Please consider contributing to Jackie's medical mission to Belize by "clicking here".


Parenchyma

The term [parenchyma] is a Greek term (παράένχέω). Its origin and meaning have little relation to the medical use of the term. The word means "that what is poured" or to "pour in". The actual definition of the term is "the proper mass of a solid organ". If someone refers to the "liver parenchyma", they are referring to the hepatic tissue, so it is with any other solid organ.

The etymology of the word is obscure and reflects ancient physiological theories and history. Vesalius mentions that the word was introduced by Erasistratus circa 300BC. He thought that the blood was "poured" into the organ and then this poured fluid would congeal to form the organ's proper mass. With time this concept was abandoned, but the word persisted to its modern meaning.

Interesting, there are many which accentuate the word wrongly. The accent or stress should be on the letter "e" and not on the letter 'y", so it should be pronounced "parénchyma"